THE ISOLATION AND CHARACTERIZATION OF COPPER METHYLENE VIA MATRIX ISOLATION SPECTROSCOPY

Sou-Chan Chang, Zakya H. Kafafi, Robert H. Hauge, John L. Margrave,* and W. E. Billups* The Department of Chemistry and the Rice Quantum Institute Rice University, P.O. Box 1892 Houston, Texas 77251

<u>Summary</u>: The reactions of copper atoms with diazomethane have been investigated via FTIR matrix isolation spectroscopy. In argon matrices $CuCH_2$ and N_2CuCH_2 have been characterized whereas only N_2CuCH_2 is observed in nitrogen matrices.

The copper-catalyzed decomposition of diazo compounds is an old reaction¹ which continues to be used extensively in synthesis (cyclopropanation). Several studies² support a coppermethylene complex as proposed originally by Yates.³ More recently, a metallacycle mechanism has been invoked by Negishi⁴ to account for the cyclopropanation reaction as exemplified by the following scheme:

To the best of our knowledge, no spectroscopic evidence for copper-methylene complexes has been reported.⁵ In this communication we report the isolation and characterization of $CuCH_2$ by FTIR matrix isolation spectroscopy.

Copper atoms were codeposited with a mixture of argon and diazomethane⁶ onto a rhodiumplated copper mirror at 11 K using the apparatus described previously.⁷ The infrared spectrum, measured with an IBM IR98 Fourier Transform Spectrometer, showed peaks at 3034.7, 2960.7, 1344.9, 614.0, and 526.0 cm⁻¹ which can be assigned to the unligated species CuCH₂. The assignments of these bands along with those of the isotopically labeled species are verified and confirmed with a normal coordinate analysis and presented in Table I. A doublet splitting with a 2:1 ratio for the 614.0 cm⁻¹ band indicates that this absorption is due to a CuC stretching mode where only one copper atom is involved (natural abundance of $Cu^{65} = 69.1\%$, $Cu^{63} = 30.8\%$).

Vibration Mode	CuCH ₂		Cu ¹³ CH ₂		CuCHD		CuCD ₂	
	obs	cal	obs	cal	obs	cal	obs	cal
CH ₂ s-stretch	2960.7	2961.6	2955.6	2954.8	2219.0	2218.5		2160.4
CH ₂ scissor	1344.9	1346.0	1338.6	1339.7	1196.0	1191.8	1013.7	1015.2
CuC stretch	614.0	615.6	597.6	599.4	610.9	609.6	570.4	567.2
CH ₂ a-stretch	3034.7	3035.9	3024.1	3022.9	2996.6	2996.7		2263.4
CH ₂ rock		573.2		569.9		474.1		433.2
CH ₂ wag	526.0	524.8	521.7	520.0	471.0	472.3	409.1	413.0

Table I. Measured and Calculated Infrared Frequencies (cm⁻¹) for CuCH₂, Cu¹³CH₂, CuCHD, and CuCD₂ in Solid Argon.

Two additional species were also characterized. One exhibited a spectrum analogous to CH_2N_2 and was assigned to a $Cu(CH_2N_2)$ complex. The other showed absorption peaks at 2957.3, 2279.9, 600.3, and 573.5 cm⁻¹. The strong absorption at 2279.9 cm⁻¹ assigned to a N=N stretching mode and the similarity of the remaining bands to those of $CuCH_2$ led to the assignment of this species as a $CuCH_2(N_2)$ complex.

Photolysis of the matrix at λ^{\geq} 500 nm led to the disappearance of bands assigned to the Cu(CH₂N₂) adduct with a simultaneous 2:1 enhancement of bands assigned to CuCH₂ and N₂CuCH₂, respectively, as compared to a 4:1 ratio for the spontaneous reaction observed upon deposition. Possible structures for the Cu(CH₂N₂) adducts are:

Structures 1 and 2 would probably be trapped, whereas 3 might proceed directly to product.

Additional photolysis studies showed that the two sets of bands assigned to CuCH₂ and N₂CuCH₂ are photoreversible. Thus the set assigned to N₂CuCH₂ decreases in intensity due to photodissociation of N₂ after λ^{\geq} 400 nm photolysis, whereas uv photolysis leads to the reverse process.

Both spontaneous and photo-assisted reactions via $Cu(CH_2N_2)$ adducts are also observed in nitrogen matrices. The vibrational absorptions of the insertion products in the nitrogen matrices are generally similar to N_2CuCH_2 in argon matrices. Thus it seems likely that only one N_2 molecule is interacting significantly with CuCH₂ in the nitrogen matrix. The coordinated N_2 cannot be photodissociated.

The overall reaction pattern of copper atoms in cryogenic matrices can then be summarized as follows:

Acknowledgment

4

We thank the 3M Company and the National Science Foundation for support of this work.

References

- Loose, A. J. Prakt. Chem. 1909, 79, 507. Wolff, L. Ann. 1912, 394, 23. Ebel, F.; Brunner, R.; Mangelli, P. Helv. Chim. Acta 1929, 12, 19. Guerdmann, C. Ann. 1938, 536, 29.
- Skell, P. S.; Etter, R. M. Chem. Ind. (London) 1958, 624; Proc. Chem. Soc. 1961, 443. Nozaki, H.; Moriuti, S.; Yamabe, M.; Noyori, N. Tetrahedron Lett. 1966, 59. Nozaki, H.; Moriuti, S.; Takaya, H.; Noyori, R. Tetrahedron 1968, 24, 3655. Moser, W. R. J. Am. Chem. Soc. 1969, 91, 1135, 1141, and references therein.
- 3. Yates, P. J. Am. Chem. Soc. 1952, 74, 5376.
- 4. Negishi, E.-i. "Organometallics in Organic Synthesis", Wiley-Interscience: New York, 1980.
- 5. For a discussion of metal carbene complexes, see: "Transition Metal Carbene Complexes", Verlag Chemie: Weinheim, Federal Republic of Germany, 1983.
- For a discussion of the decomposition of diazomethane using various metals, see: Kirsme, W. "Carbene Chemistry", Academic Press: New York, 1964.
- 7. Hauge, R. H.; Fredin, L.; Kafafi, Z. H.; Margrave, J. L. Appl. Spec. 1986, 40, 588.

(Received in USA 13 October 1986)